The purpose of the Center for the School of the Future is to promote empirically validated practices in public education systems and to encourage cooperative and research relationships between K-12 and higher education institutions.
A recent trend among states and educational think tanks has been to promote a system of instruction called Personalized Competency-Based Learning (PCBL). This recommendation is featured in the 2022 State Policy Priorities and Recommendations of the Aurora Institute (2022) [See https://aurora-institute.org/resource/aurora-institute-2022-state-policy-priorities/]. Currently the Utah State Board of Education (USBE) has publicized a commitment to the implementation of PCBL (https://www.schools.utah.gov/curr/pcbl), though there is little research to demonstrate its effectiveness in improving student learning.

The purpose of this policy brief is to help readers increase their understanding of PCBL generally, its potential impacts, and returns on investments. Although there are many definitions and variations of PCBL in schools and districts throughout the country, most combine the elements of personalized learning and competency-based learning. Traditionally, personalized learning (PL) has been characterized as the development of an individualized curriculum and instructional path for each student based on their unique skills, abilities, interests, background, and experiences (Herold, 2019). In the newest version of PL, computers allow instruction to be individualized or “personalized” for each student. Competency-based learning (CBL) is an approach to education that focuses on students’ progression through curriculum to attain pre-determined competencies at their own pace, depth, etc., typically using computer digital technology.

Computer digital technology is central to the implementation of PCBL. In fact, the initial investment and support for PCBL came from the technology sector, including The Bill and Melinda Gates Foundation as well as the Chan Zuckerberg Initiative. These philanthropic organizations were interested in transforming schools and student experiences through innovative, adaptive technologies (Aslop & Mead, 2015). They developed a working definition of personalized and competency-based learning that involved four elements: 1) computerized learning profiles consisting of up-to-date digital records of learning strengths, needs, motivations, and goals, 2) personalized learning paths for each student based on adaptive software, 3) digital, competency-based progression through clearly defined personalized goals for each student, and 4) flexible learning environments responsive and adaptive to support students’ goals (Bill and Melinda Gates Foundation, 2014).

Reports and stories about the success and challenges of PCBL are ubiquitous on the Internet. In 2018, the Education Week Research Center found that 97% of principals reported using digital technology to personalize learning in some way, and more than half of principals reported that personalized learning was a “promising idea” (Herold, 2019). Some important learning principles form the backbone of PCBL—the importance of choice, differentiated instruction, immediate feedback, individualized pacing, and so forth. The same report also found that most principals nationwide worried about, 1) too much screen time, 2) students working alone too often, and 3) the technology industry gaining too much influence.
Because PCBL is an instructional learning system often mediated and managed by computer technology, it is informative to examine data from the COVID-19 pandemic-mandated conversion to remote technology or hybrid instruction. Prior to the COVID-19 pandemic, student achievement in the US and in Utah had remained stagnant. Post COVID-19, national long-term trends in reading and math are no longer stagnant; scores have dipped to historic lows with greater score decreases for lower-performing students (National Assessment of Educational Progress, 2022).

Research has demonstrated three reasons for these historic lows. First, the promise that technology would mediate instruction in ways that exceeded or even rivaled traditional classroom-based instruction failed (Azevedo, De, Rogers, et al., 2022; Goldhaber, Kane, McEachin, et al., 2022). Second, the learning losses for most students during this period of remote, technological instruction for children and adolescents, especially low-income students, have been substantial (Goldhaber, et al., 2021; National Assessment of Educational Progress, 2022). Third, high school students who worked remotely during COVID-19 reported statistically lower levels of social, emotional, and academic well-being than students who continued in-person instruction (Duckworth, Kautz, Defnet, et al., 2021).

Though there are many reports, surveys, and papers found on the Internet, high quality research on the effectiveness of PCBL published in top tier, blind-reviewed journals, especially as it relates to K-12 student learning, has been minimal, and results of studies on student learning outcomes have been mixed. Based on a RAND analysis of a large-scale study of PCBL, treatment effects were estimated to be approximately 0.09 ES in mathematics and 0.07 ES in reading. These effect sizes translated to minimal gains of about 3 percentile points in mathematics and no significant gains in reading (Pane, Steiner, Baird, et al., 2017). Hattie (2009) reported that effect sizes of .20 were considered small; he recommends a medium effect size of .40 before an instructional approach can be considered worth the effort. For PCBL, the “effort” includes massive financial, human resource, technological, administrative, and infrastructure changes required for full implementation.

Like the RAND study, results from a 2019 meta-analysis of competency-based learning (CBL) on student outcomes were also mixed (Evans, Landl, & Thompson, 2020). In fact, researchers were not able to calculate effect sizes because there was so much variability in how schools implemented and assessed CBL in different studies. A few studies even reported a negative impact of CBL. When positive results did occur, they did not generalize across grades and content areas (Evans et al., 2020). In other words, CBL benefited some grades and content areas but not others.

Finally, Leech, Gullet, Cummings, and Haug (2022) found that teaching remotely mediated by technology during COVID-19
There appear to be few Utah school district-based exemplars of full implementation of PCBL. One PCBL school district exemplar often highlighted by the USBE is Juab County School District in Nephi, UT. In 2021/2022 Juab posted a 38% RISE reading proficiency score, and 36% math proficiency, and 37% science proficiency scores. These scores compare to a 2017/2018 posting of 43% RISE reading proficiency, 52% math proficiency, and 51% science science proficiency. This represents a 5% drop in reading, a 16% drop in math proficiency, and a 14% drop in science proficiency over a five-year period. Despite the decline of students’ test scores during COVID-19, if PCBL is as promising as is claimed, Juab students’ learning outcomes would be expected to improve, not drop, over this five-year period.

Juab posted some of the highest high school graduation rates in the state in 2020-2021, 98%, and some of the lowest high school dropout rates - less than 2%. Also of note, the high school graduation rate in Juab has steadily increased from 78% in 2008 to 98% in 2021. ACT scores show Juab to be 16th from the bottom of all Utah school districts and charter schools with only 44.8% of their graduates scoring above an 18 on the ACT with a district average of 17.5 Composite ACT Score (State Average Composite ACT score in Utah is 19.6 in 2021). From these data, PCBL seems to endow secondary students in Juab School District with some motivational advantages to finish a high school diploma, but this does not appear to translate into higher levels of student academic outcomes in either the secondary or elementary school levels.

Computer technology plays a role in education, and approaches like PCBL may offer advantages to certain student outcomes over traditional classroom instruction. There is great variability in how states, districts, and schools define and implement PCBL. Empirical studies of PCBL are few, and currently, there is little research that demonstrates that PCBL improves academic achievement. Further, little is known about the cost-benefit ratio of system-wide implementations of PCBL.
References


* Research reports funded and disseminated by program developers or publishers were excluded from this policy brief due to conflicts of interest.

Acknowledgment

This policy brief was supported by funding from the Center for the School of the Future at Utah State University.